Avian Eggshell Pigments and Their Variability

I. Mikšík,* V. Holáň† and Z. Deyl†

*Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic and †Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 7, CZ-16637 Praha 6, Czech Republic

ABSTRACT. Eggshell pigment constituents were determined by a high-performance liquid chromatography method. Most of the work was done on whole clutches of red-backed shrike (Lanius collurio). In addition to the known pigments (protoporphyrin IX, biliverdin), a new pigment, zinc-containing protoporphyrin IX, was found as well. Its content was highly variable—from 0% to 100%. The content of total protoporphyrin IX (with and without zinc) ranged from 1.72 to 114.84 nmol (average for whole clutches was 39.93 nmol), while the content of zinc-deficient protoporphyrin IX was ND (not detectable) – 110.46 nmol (average for whole clutches was 3.04 nmol) and the content of zinc-containing protoporphyrin IX was ND – 32.28 nmol (average for whole clutch was 5.91 nmol). Zinc-containing protoporphyrin IX was absent in 33% of eggs, while zinc-deficient protoporphyrin IX was absent in a single case only (2%). If clutches from relatively “polluted” and “unpolluted” regions were compared, no differences have been found. Based on these findings is the conclusion that the high variability in eggshell pigment content is likely to reflect physiological influences (e.g. order of egg laying and the whole condition of the nesting female) rather than environmental interferences. This conclusion is in agreement with our previous findings. Additional data regarding the pigment content of seven other bird species are also included. Comp Biochem Physiol 113B, 607–612, 1996.

KEY WORDS. Eggshell, pigment, porphyrin, metalloporphyrin, protoporphyrin, biliverdin, red-backed shrike, environment

INTRODUCTION

Avian eggshell is covered by a pigmented layer that may cap or plug the pore canals. Board and Scott (2) use the term “shell accessory material” (SAM) for all layers occurring on the outer surface of the calcitic shell. This layer has a basic task in maintaining the integrity of the shell’s gaseous diffusion pathway against obstruction by nest debris, flooding with water and in reducing the probability of bacterial penetration of the shell post-oviposition. Inorganic SAM is composed mainly of vaterite (one of the four polymorphs of calcium carbonate, i.e. calcite, aragonite, vaterite and amorphous calcium carbonate) (21). Colour of SAM results from the presence of eggshell porphyrin pigments. Kennedy and Veevers (13,14) discovered that brown and black pigments are associated with protoporphyrin IX while blue or green colour is associated with biliverdin IX and biliverdin zinc chelate. Sparks (21) reviewed that pigments occur primarily in the cuticle but can be detected in the mineralized shell immediately opposed to the cuticle or may be located wholly or partially in the underlying shell. This pigmentation seems to have preferably cryptic reasons; the demand for minimum solar heating of the eggs is unlikely to play an important role in coloration as studies on spectral reflectance proved that differently coloured eggs exhibit uniformly high reflectance in the near infrared region, independent of the eggshell colour (1).

The eggshell pigment is accumulated, in the case of quail, in the shell gland after ovulation time and deposited on the surface of eggshell 3.5 to 2 hr after oviposition. Steroid hormones (progesterone) may affect the accumulation of pigment in the quail shell gland (19).

Eggshell colour may considerably differ and so it seems interesting to investigate the differences in the composition and pigment content of differently coloured eggshells. As concluded in our previous work (16), changes in eggshell coloration may reflect physiological condition like egg laying or nesting, but they may possibly result from exogenous (environmental) factors as well. It is well documented in the literature that changes in the porphyrin content and its metabolism in liver result from the exposure to halogenated aromatic hydrocarbons. Halogenated aromatic hydrocarbons have been shown to elevate the level of porphyrins in the livers of Herring gulls (8) and Japanese quail (4,17). On the other hand, however, in American kestrel the exposure to polychlorinated biphenyls remained without any effect (5), though exposure of Japanese quail to hexachlorobenzene and tetrachlorohydro-
The use of the knowledge very limited information about the quantitation of the pigment composition of differently coloured eggs is available from the literature. Also our reference search for data about eggshell colouration changes as the result of environmental factors and reconstituted in 1 ml chloroform. Validation of the procedure was done by esterification of standards following the same protocol.

Absorption spectra were measured by UV/VIS Scanning Spectrophotometer (Philips, Eindhoven, The Netherlands).

Porphyrins were analysed by reversed-phase high-performance chromatography using Waters automated gradient controller (Millipore, Milford, MA, U.S.A.), Waters Model 510 pumps and steel 300 × 3.9 mm PicoTaq column (C18). The sample (50 μl) was injected into the column and eluted with a gradient consisting of (A) methanol-distilled water:pyridine 35:65:0.25 v/v and (B) methanol-acetonitrile:pyridine 90:10:0.25 v/v (flow rate 1.2 ml/min and temperature 55°C). The gradient started at A/B 80:20 reaching 10:90 ratio after 15 min. For the next 10 min the elution was isocratic followed by another 10 min isocratic elution at 100% B. Elution was monitored by absorbance at 410 nm (Waters 490E multiwavelength detector) and by fluorescence at 405 ex/620 em nm (Fluorescence monitor RF-530, Shimadzu, Kyoto, Japan). Biliverdin, on the contrary to other porphyrins, can not be detected by selected fluorescence and is accessible by absorbance detection only. Therefore, comparing fluorescence and absorbance detection may help identification of this porphyrin.

The used chromatographic system was successful in separation of methyl esters of porphyrins and their metal complexes (see Table 1). Calibration was linear in the range 0.01–10 nmol/injection with the limit of detection 0.003 nmol for all porphyrins (for zinc-deficient protoporphyrin r = 0.989 and for zinc-containing protoporphyrin r = 0.991); with biliverdin, however, the calibration was linear in the range 0.05–2 nmol/injection, r = 0.991 with the limit of detection 0.020 nmol.

Thin-layer high-performance chromatography was carried out on HPTLC plates RP-18 F254S (10 × 10 cm) for nano TLC (Merck). The compounds were detected as quenching spots under UV light at 254 nm or as fluorescent spots under UV light at 366 nm (Min UVIS; Desaga, Heidelberg, Ger-

TABLE 1. Retention times of methyl esters of porphyrins without or with Zn²⁺ by reversed-phase liquid chromatography
Eggshell Pigments

many). Plates were developed with pure ethanol or methanol. In the case of ethanol, the relative mobility (Rf × 100) for Zn2+-deficient protoporphyrin was 18; Zn2+-containing protoporphyrin, 49; Zn2+-deficient biliverdin, 64; and Zn2+-containing biliverdin, 69; in the case of methanol, mobility for Zn2+-deficient protoporphyrin was 12; Zn2+-containing protoporphyrin was 38; Zn2+-deficient biliverdin was 54; and Zn2+-containing biliverdin was 59.

RESULTS

A new porphyrin eggshell pigment, zinc-containing protoporphyrin IX, was found in some preparations. Identification was made by comparing the absorption spectrum and retention times in high-performance liquid chromatography and high-performance thin-layer chromatographic mobility with an appropriate standard. Absorption spectrum in chloroform of standard zinc-containing protoporphyrin IX gave maximum at 416, 544 and 581 nm and this spectrum was identical with spectra obtained i) after the reaction of extracted protoporphyrins from egg with zinc acetate and ii) with the egg extract that contained probably only this metalloporphyrin. Analogous results were obtained by both chromatographic methods. Retention time (or Rf in TLC) was identical for Zn2+ protoporphyrin IX and for the product arising after the reaction of extracted protoporphyrins from egg with zinc acetate (i) and for the extracted material of the egg, which contained probably only this metalloporphyrin (ii). This metalloporphyrin can’t arise from impurities present due to the extraction process, because the standard of zinc-deficient protoporphyrin IX prepared by the identical procedure from eggshells didn’t give any peak with retention resembling the Zn complex. Based on these observations it is feasible to conclude that zinc-containing protoporphyrin IX occurs in the eggshells. In the next stage of our investigation we attempted to quantify this new pigment.

Observed retention times of porphyrins and zinc-containing porphyrins are summarized in Table 1. Protoporphyrin IX was examined also as Cu2+ complex. The retention time of Zn-containing protoporphyrin IX upon HPLC was 19.9 min, Zn-deficient protoporphyrin IX was 23.9 min and Cu-containing protoporphyrin IX was 32.0 min. In all investigated eggshells the Cu2+ complex was not found.

The content of total-PP (i.e. sum of protoporphyrin IX with and without zinc) (Fig. 1C) and in the form of zinc-deficient PP (Fig. 1A) and zinc-containing PP (Fig. 1B) is highly variable. This broad span is seen both as inter-clutch and as intra-clutch variations. Clutch average (clutch size was 5–6 eggs) of total PP (n = 9) was 39.93 ± 12.09 nmol (16.20–54.66 nmol); for zinc-deficient PP the clutch average was 34.02 ± 10.78 nmol (15.81–51.01 nmol); and the value for zinc-containing PP was 5.91 ± 4.57 nmol (0.38–14.95 nmol).

When investigating individual eggs (n = 49), the span of values was, of course, higher for the total PP; 1.72–81.81 nmol (average 39.88 ± 18.70 nmol); for zinc-deficient PP ND (not detectable)–75.66 nmol (average 33.74 ± 18.63 nmol); and for zinc-containing PP ND–32.28 nmol (average 6.15 ± 8.37 nmol). Zinc-deficient PP wasn’t found in one case only, while zinc-containing PP was absent 16 times (i.e. 32.7%). The average proportion of zinc-containing PP to total PP in clutches was 16.54% (3.75–35.45%); in the case of individual eggs the ratio was 17.32% (0.00–100.00%).

The influence of environmental factors on the pigment content was studied by comparison of the total of clutches from Prague (n = 5) and Vsetin region (n = 4) (for details about environment see Discussion). In these sets we didn’t discover any significant difference. The average for total PP was 41.42 vs. 38.07 nmol; for zinc-deficient, PP was 36.14 vs. 31.37 nmol; for zinc-containing, PP was 5.28 vs. 6.69 nmol and the proportion of zinc-containing PP to total PP was 15.97 vs. 17.25%. In principle the same result was obtained when averages for the individual eggs were compared (examined clutches contained 5–6 eggs): total PP 40.89 vs. 38.55 nmol, zinc-deficient PP 35.44 vs. 31.46 nmol, zinc-containing PP 5.44 vs. 7.09 nmol and the proportion of zinc-containing PP to total PP was 16.72 vs. 18.12%.

The span of protoporphyrin content in the case of red-backed shrike was larger. When we added some individual non-hatched eggs (four from one nest and three times one egg), the average of total PP was 46.03 ± 24.69 nmol (span was 1.72–114.84 nmol); zinc-deficient PP was 40.05 ± 25.01 nmol (span was ND–110.46 nmol); zinc-containing PP was 5.98 ± 8.05 nmol (span was ND–32.28 nmol) and the proportion of zinc-containing PP to total PP was 13.84 ± 23.36% (0.00–100.00%).

All these values (i.e. the high span and SD) indicate a high variability of porphyrin content in eggshells of shrike. This is in agreement with the variability of shrike eggshell color. In connection with these observations one may ask the question about pigment content variability in other bird species. Preliminary data in this respect are summarized in Table 2. It is obvious that the amount of porphyrin found depends on the colour of the eggs (from white eggs of starling to the highly spotted eggs of yellowhammer).

Although the data regarding variability of pigment content in Table 2 are rather limited, it is feasible to assume that the span of values in all investigated species is high. Variability of shrike eggshell colouration is the highest, which is in agreement with span of pigment content.

DISCUSSION

Our results about protoporphyrin IX and biliverdin are in agreement with the findings of Kennedy and Veyes (14) who examined 108 wild bird species. In the eggshell of the Araucano fowl they also found traces of coproporphyrin (13). With (23) found in brown hen’s eggs a mixture of porphyrins (in addition to protoporphyrin, also coproporphyrin, pentacarboxylic porphyrin, uroporphyrin and some unidentified porphyrins). These findings may reflect the difference between
TABLE 2. Summary of individual pigment content in various bird species (in nmol)

<table>
<thead>
<tr>
<th>Species*</th>
<th>Protoporphyrin IX</th>
<th>Protoporphyrin IX</th>
<th>Protoporphyrin IX</th>
<th>Protoporphyrin IX</th>
<th>Biliverdin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Without Zn(^{2+})</td>
<td>With Zn(^{2+})</td>
<td>Biliverdin</td>
<td></td>
</tr>
<tr>
<td>Yellowhammer (Emberiza citrinella)</td>
<td>224.08</td>
<td>220.16</td>
<td>3.92</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>223.83</td>
<td>219.84</td>
<td>3.99</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220.22</td>
<td>215.79</td>
<td>4.43</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>169.12</td>
<td>165.71</td>
<td>3.41</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td>Blackbird (Turdus merula)</td>
<td>119.33</td>
<td>116.76</td>
<td>2.57</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105.38</td>
<td>103.52</td>
<td>1.86</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td>Barred warbler (Sylvia nisoria)</td>
<td>80.29</td>
<td>75.03</td>
<td>5.26</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.55</td>
<td>37.04</td>
<td>4.51</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td>Chiffchaff (Phylloscopus collybita)</td>
<td>38.29</td>
<td>35.85</td>
<td>2.44</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.28</td>
<td>12.28</td>
<td>__(^b)</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td>Dunnock (Prunella modularis)</td>
<td>4.36</td>
<td>2.18</td>
<td>2.18</td>
<td>21.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.22</td>
<td>2.22</td>
<td>__(^b)</td>
<td>31.45</td>
<td></td>
</tr>
<tr>
<td>Black redstart (Phoenicurus ochruros)</td>
<td>7.37</td>
<td>7.37</td>
<td>__(^b)</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.46</td>
<td>2.46</td>
<td>__(^b)</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.28</td>
<td>1.28</td>
<td>__(^b)</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.72</td>
<td>__(^b)</td>
<td>__(^b)</td>
<td></td>
</tr>
<tr>
<td>Starling (Sturnus vulgaris)</td>
<td>0.60</td>
<td>0.40</td>
<td>__(^b)</td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>0.24</td>
<td>__(^b)</td>
<td>6.04</td>
<td></td>
</tr>
</tbody>
</table>

*Values for individual eggs.
\(^b\)Not detectable.

artificial breeding and wild living birds. Kennedy and Veevers (13,14) also found biliverdin zinc chelate in some bird species. In our egg collection, this pigment was not detectable. The new pigment, zinc-containing protoporphyrin, was found in most species (except black redstart and starling). Porphyrin content was, as in the case of shrike, highly variable; in the case of chiffchaff and dunnock it was present in one egg, while in one egg absent. The discovery of this metalloporphyrin among eggshell pigments calls attention to the possibilities of influencing of eggshell colour by metals present in the environment through forming porphyrin chelates. This possibility, however, wasn’t confirmed. The effort to discover environmental influences was realised in two regions—Prague and Vsetín. From these regions some environmental data from years 1993/94 are available (10,20). The average concentration (per year) for SO\(_2\) was 30 \(\mu\)g.m\(^{-3}\); for NO\(_x\) it was 40 \(\mu\)g.m\(^{-3}\); and for dust aerosol it was 60 \(\mu\)g.m\(^{-3}\) in the studied Prague area; while in the Vsetín region the values were about one half or one third. These results, however, were distorted by non-homogenous placing of the monitoring stations in the Vsetín region (differences between monitored towns and studied country areas). Average amounts of some metals in dust aerosols measured at Prague by monitoring station close to the study area (20) were: Pb, 50 ng.m\(^{-3}\); Cd, 8 ng.m\(^{-3}\); Zn, 190 ng.m\(^{-3}\); Ni, 325 ng.m\(^{-3}\); Cr, 2.3 ng.m\(^{-3}\); and As, 0.8 ng.m\(^{-3}\), which may be quite informative. Prague is classified as an ecologically affected region with high load, while Vsetín region is without any classification (10).

Literature about environmental pollutants presented in birds living in the Czech Republic is rather limited. There are very few data about chlorinated pesticides and heavy metals, e.g. in the eggs of water birds (11) or in the eggs of the black-headed gull (18). The results are very variable; the sum of chlorinated pesticides for clutches (great crested grebe, greylag goose, mallard, coot and black-headed gull) varied from 0.098 to 17.535 mg.kg\(^{-1}\) in dry matter of eggs and in the case of polychlorinated biphenyls from 0.017 to 25.032 mg.kg\(^{-1}\). Values of heavy metals in eggs were found: Cu, 0.450–4.530 mg.kg\(^{-1}\) in dry matter of eggs; Hg, 0.009–0.365 mg.kg\(^{-1}\); Pb, <0.100–0.720 mg.kg\(^{-1}\); Cd, <0.010–0.160 mg.kg\(^{-1}\); and Cr, <0.005–0.560 mg.kg\(^{-1}\) (11).

It may be argued that for a study of environmental factors influencing the eggshell pigmentation, the controlled laboratory conditions would give better and more easily interpretable results. This, of course, may be another approach to the study of this problem, however one has to bear in mind the synergistic influences of the environment. This actually was the reason for proper field experiments. On the other hand it is true that the influences are, under such conditions, highly complex and the results may be difficult to interpret. This may be documented by the extensive work of Taper et al. (22) who studied 59 American songbird species in 22 regions differing

FIG. 1. Analysis of protoporphyrin content of red-backed shrikes’ whole clutches. (A) Zinc-deficient protoporphyrin IX. (B) Zinc-containing protoporphyrin IX. (C) Total protoporphyrin IX. (D) Proportion of zinc-containing protoporphyrin IX to total protoporphyrin IX (+ individual value, ○ average of whole clutch). Nest numbers 1–5 are from Prague and nests 6–9 are from Vsetín region.
considerably in their characteristics over 20 years. No univo-
cal conclusion from these data can be drawn.

It may be concluded that zinc-containing protoporphyrin
IX is another member of the porphyrin (metalloporphyrin)
family present in eggshells of the red-backed shrike. Its con-
tent is variable between single eggs (even in one clutch).
When evaluating the influence of the environment, no differ-
ences were observed between eggs from polluted and unpoll-
luted areas. In agreement with our previous result (16), it
appears that the porphyrin content probably reflects other in-
fluences than environmental conditions (e.g. order of egg lay-
ing and whole condition of the nesting female).

We are grateful to Mr. M. Smrt for excellent technical assistance.

References
1. Bakken, G. S.; Vanderbilt, V. C.; Butterm, W. A.; Dawson,
W. R. Avian eggs: thermoregulatory value of very high near-
3. Carpenter, H. M.; Harvey, M. J.; Buhler, D. R. The effect of
tetrachlorohydroquinone on hexachlorobenzene-induced por-
92; 1985.
4. Elliott, J. E.; Kennedy, S. W.; Jeffrey, D.; Shuttt, L. Polychlori-
nated biphenyl (PCB) effects on hepatic mixed function oxida-
Physiol. 96C:205–210; 1990.
5. Elliott, J. E.; Kennedy, S. W.; Jeffrey, D.; Shuttt, L. Polychlori-
nated biphenyl (PCB) effects on hepatic mixed function oxida-
es and porphyrina in birds. II. American kestrel. Comp. Biochem.
6. Elliott, J. E.; Martin, P. A. Chlorinated hydrocarbons and shell
7. Forsyth, D. J.; Martin, P. A.; De Smet, K. D.; Riske, M. E.
Organochlorine contaminants and eggshell thinning in grebes
8. Fox, G. A.; Kennedy, S. W.; Norstrom, R. J.; Wigfield, D. C.
Porphyrin in herring gulls: a biochemical response to chemical
contamination of Great Lakes food chains. Environ. Toxicol.
K. M., ed. Porphyrins and metalloporphyrins. Amsterdam:
10. Héniková, S.; Beneč, J. Životní prostředí České republiky (En-
vironment of the Czech republic, in Czech). Czech Ecological
Institute, Praha; 1994.
11. Hudec, K.; Kredl, F.; Pellantová, J.; Svobodník, J.; Svobodová,
R. Residues of chlorinated pesticides, PCB and heavy metals in
the eggs of water birds in southern Moravia. Folia zoologica
12. Kawanishi, S.; Seki, Y.; Sano, S. Polychlorobiphenyls that in-
duce delta-aminolevulinic acid synthetase inhibit uroporphyrino-
gen decarboxylase in cultured chick embryo liver cells. FEBS
13. Kennedy, G. Y.; Vever,s, H. G. Eggshell pigments of the Ara-
14. Kennedy, G. Y.; Vever,s, H. G. A survey of avian eggshell pig-
15. Lundholm, C. E. Inhibition of prostaglandin synthesis in egg-
shell gland mucosa as a mechanism for p,p′-DDE-induced egg-
shell thinning in birds—a comparison of ducks and domestic
16. Mikšík, I.; Holáh, V.; Deyl, Z. Quantification and variability
of eggshell pigment content. Comp. Biochem. Physiol. 109A:
769–772; 1994.
17. Miranda, C. L.; Wang, J. L.; Henderson, M. C.; Carpenter,
H. M.; Nakaue, H. S.; Buhler, D. R. Studies on the porphyrino-
genic action of 1,2,4-trichlorobenzene in birds. Toxicology 28:
83–92; 1983.
18. Pellantová, J.; Hudec, K.; Kredl, F.; Svobodník, J.; Svobodová,
R. Organochlorine pesticides, PCB and heavy metals residues
in the eggs of the Black-headed Gull, Larus ridibundus, in
19. Soh, T.; Koga, O. The effects of sex steroid hormones on the
pigment accumulation in the shell gland of Japanese quail.
Praha; 1994.
21. Sparks, N. H. C. Shell accessory materials: structure and func-
tion. In: Board, R. G.; Fuller, R., eds. Microbiology of the
responses of bird species to environmental change. Oecologia
598; 1973.